DM-GAA

ISSN 1509-9415 (print version)

ISSN 2084-0373 (electronic version)

https://doi.org/10.7151/dmgaa

Discussiones Mathematicae - General Algebra and Applications

Cite Score (2023): 0.6

SJR (2023): 0.214

SNIP (2023): 0.604

Index Copernicus (2022): 121.02

H-Index: 5

Discussiones Mathematicae - General Algebra and Applications

Article in volume


Authors:

S. K. Nimbhorkar

Shriram K. Nimbhorkar

Department of Mathematics

Dr. Babasaheb Ambedkar Marathwada University

Aurangabad 431004, India

email: sknimbhorkar@gmail.com

Y. S Patil

Yogita S. Patil

Department of Mathematics
Dr. Babasaheb Ambedkar Marathwada University
Aurangabad 431004, India

email: saharshyog.143@rediffmail.com

Title:

Fuzzy weakly 2-absorbing ideals of a lattice

PDF

Source:

Discussiones Mathematicae - General Algebra and Applications 42(2) (2022) 255-277

Received: 2020-07-22 , Revised: 2021-01-11 , Accepted: 2022-03-19 , Available online: 2022-10-05 , https://doi.org/10.7151/dmgaa.1389

Abstract:

As a generalization of the concept of a weakly prime ideal, we introduce the concepts of a fuzzy weak prime ideal, a fuzzy weakly $2$-absorbing ideal of a lattice. Some results of fuzzy weakly $2$-absorbing ideals and fuzzy weakly primary ideals are proved. We also introduce and study fuzzy weakly $2$-absorbing ideals in a product of lattices.

Keywords:

lattice, fuzzy sublattice, fuzzy ideal, fuzzy weakly prime ideal, weakly 2-absorbing fuzzy ideal

References:

  1. N. Ajmal and K.V. Thomas, Fuzzy lattices, Infor. Sc. 79 (1994) 271–291.
    https://doi.org/10.1016/0020-0255(94)90124-4
  2. D.F. Anderson and A. Badawi, On $n$-absorbing ideals of commutative rings, Comm. Algebra 39 (2011) 1646–1672.
    https://doi.org/10.1080/00927871003738998
  3. D.D. Anderson and E. Smith, Weakly prime ideals, Houston J. Math. 29 (4) (2003) 831–840.
  4. A. Badawi, On $2$-absorbing ideals of commutative rings, Bull. Austral. Math. Soc. 75 (2007) 417–429.
    https://doi.org/10.1017/S0004972700039344
  5. A. Badawi and A.Y. Darani, On weakly $2$-absorbing ideals of commutative rings, Hoston J. Math. 39 (2) (2013) 441–452.
  6. K.T. Gaikwad, A Study of Ideals in Lattices and Ordered Structures, Ph.D. Thesis (Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, India, 2018).
  7. G. Grätzer, Lattice Theory: First Concepts and Distributive Lattices (W.H. Freeman and Co. San Francisco, 1971).
  8. B.B.N. Koguep, C. Nkuimi and C. Lele, On fuzzy prime ideals of lattice, Samsa J. Pure and Appl. Math. 3 (2008) 1–11.
  9. S.K. Nimbhorkar and Y.S. Patil, Generalizations of prime fuzzy ideals of a lattice, J. Hyperstructures 9 (2) (2020) 1–33.
  10. S.H. Payrovi and S. Babaei, On $2$-absorbing ideals, Inter. Math. Forum 7 (6) (2012) 265–271.
  11. M.P. Wasadikar and K.T. Gaikwad, On $2$-absorbing and weakly $2$-absorbing ideals of lattices, Math. Sci. Int. Res. J. 4 (2015) 82–85.
  12. M.P. Wasadikar and K.T. Gaikwad, Some properties of $2$-absorbing primary ideals in lattices, AKCE Internat. J. Graphs and Combin. 16 (2019) 18–26.
    https://doi.org/10.1016/j.akcej.2018.01.015
  13. L.A. Zadeh, Fuzzy sets, Infor. and Cont. 8 (1965) 338–353.
    https://doi.org/10.1016/S0019-9958(65)90241-X

Close