Article in volume
Authors:
Title:
$k$-simplicity of Leavitt Path Algebras with coefficients in a $k$-semifield
PDFSource:
Discussiones Mathematicae - General Algebra and Applications 42(2) (2022) 241-253
Received: 2020-02-17 , Revised: 2021-01-20 , Accepted: 2022-03-10 , Available online: 2022-10-05 , https://doi.org/10.7151/dmgaa.1388
Abstract:
In this paper, we consider Leavitt path algebras having coefficients in a
$k$-semifield. Concentrating on the aspect of $k$-simplicity, we find a set of
necessary and sufficient conditions for the $k$-simplicity of the Leavitt path
algebra $L_S(Γ)$ of a directed graph $Γ$ over a non-zeroid
$k$-semifield $S$.
Keywords:
Leavitt path algebra, $k$-semifield, semiring, semifield, $k$-simplicity
References:
- G. Abrams and G. Aranda Pino, The Leavitt path algebra of a graph, J. Algebra 293 (2005) 319–334.
https://doi.org/10.1016/j.jalgebra.2005.07.028 - G. Abrams and G. Aranda Pino, The Leavitt path algebras of arbitrary graphs, Houston J. Math. 34 (2008) 423–442. http://agt.cie.uma.es/$\sim$ gonzalo/papers/AA3$\_$Web.pdf
- G. Abrams, Leavitt path algebras: the first decade, Bull. Math. Sci. 5 (2015) 59–120.
https://doi.org/10.1007/s13373-014-0061-7 - M.R. Adhikari, M.K. Sen and H.J. Weinert, On $k$-regular semirings, Bull. Cal. Math. Soc. 88 (1996) 141–144.
- J. Cuntz, Simple C*-algebras generated by isometries, Comm. Math. Phys. 57 (1977) 173–185.
https://doi.org/10.1007/BF01625776 - J. Cuntz and W. Krieger, A class of C*-algebras and topological Markov chains, Invent. Math. 56 (1980) 251–268.
https://doi.org/10.1007/BF01390048 - J.S. Golan, Semirings and their Applications (Kluwer Academic Publishers, 1999).
- U. Hebisch and H.J. Weinert, Semirings: Algebraic Theory and Applications in Computer Science (World Scientific, Singapore, 1998).
- Y. Katsov, T.G. Nam and J. Zumbrägel, Simpleness of Leavitt path algebras with coefficients in a commutative semiring, Semigroup Forum 94 (2016) 481–499.
https://doi.org/10.1007/s00233-016-9781-1 - W.G. Leavitt, The module type of a ring, Trans. Amer. Math. Soc. 42 (1962) 113–130.
https://doi.org/10.1090/S0002-9947-1962-0132764-X - M.K. Sen and M.R. Adhikari, On maximal $k$-ideals of semirings, Proc. Amer. Math. Soc. 118 (1993) 699–703.
https://doi.org/10.1090/S0002-9939-1993-1132423-6 - M.K. Sen and A.K. Bhuniya, On additive idempotent $k$-regular semirings, Bull. Cal. Math. Soc. 93 (2001) 371–384.
- R. Sen Gupta, S.K. Maity and M.K. Sen, Leavitt path algebras with coefficients in a Clifford semifield, Comm. Algebra 47 (2019) 660–675.
https://doi.org/10.1080/00927872.2018.1492589 - M. Tomforde, Leavitt path algebras with coefficients in a commutative ring, J. Pure Appl. Alg. 215 (2011) 471–484.
https://doi.org/10.1016/j.jpaa.2010.04.031
Close