DM-GAA

ISSN 1509-9415 (print version)

ISSN 2084-0373 (electronic version)

https://doi.org/10.7151/dmgaa

Discussiones Mathematicae - General Algebra and Applications

Cite Score (2023): 0.6

SJR (2023): 0.214

SNIP (2023): 0.604

Index Copernicus (2022): 121.02

H-Index: 5

Discussiones Mathematicae - General Algebra and Applications

Article in volume


Authors:

R. Sen Gupta

Raibatak Sen Gupta

Department of Mathematics
Bejoy Narayan Mahavidyalaya
Itachuna, Hooghly, West Bengal, India-712147

email: raibatak2010@gmail.com

M.K. Sen

Mridul K. Sen

Department of Pure Mathematics
University of Calcutta
35, Ballygunge Circular Road, Kolkata-700019, India

email: senmk6@yahoo.com

Title:

$k$-simplicity of Leavitt Path Algebras with coefficients in a $k$-semifield

PDF

Source:

Discussiones Mathematicae - General Algebra and Applications 42(2) (2022) 241-253

Received: 2020-02-17 , Revised: 2021-01-20 , Accepted: 2022-03-10 , Available online: 2022-10-05 , https://doi.org/10.7151/dmgaa.1388

Abstract:

In this paper, we consider Leavitt path algebras having coefficients in a $k$-semifield. Concentrating on the aspect of $k$-simplicity, we find a set of necessary and sufficient conditions for the $k$-simplicity of the Leavitt path algebra $L_S(Γ)$ of a directed graph $Γ$ over a non-zeroid $k$-semifield $S$.

Keywords:

Leavitt path algebra, $k$-semifield, semiring, semifield, $k$-simplicity

References:

  1. G. Abrams and G. Aranda Pino, The Leavitt path algebra of a graph, J. Algebra 293 (2005) 319–334.
    https://doi.org/10.1016/j.jalgebra.2005.07.028
  2. G. Abrams and G. Aranda Pino, The Leavitt path algebras of arbitrary graphs, Houston J. Math. 34 (2008) 423–442. http://agt.cie.uma.es/$\sim$ gonzalo/papers/AA3$\_$Web.pdf
  3. G. Abrams, Leavitt path algebras: the first decade, Bull. Math. Sci. 5 (2015) 59–120.
    https://doi.org/10.1007/s13373-014-0061-7
  4. M.R. Adhikari, M.K. Sen and H.J. Weinert, On $k$-regular semirings, Bull. Cal. Math. Soc. 88 (1996) 141–144.
  5. J. Cuntz, Simple C*-algebras generated by isometries, Comm. Math. Phys. 57 (1977) 173–185.
    https://doi.org/10.1007/BF01625776
  6. J. Cuntz and W. Krieger, A class of C*-algebras and topological Markov chains, Invent. Math. 56 (1980) 251–268.
    https://doi.org/10.1007/BF01390048
  7. J.S. Golan, Semirings and their Applications (Kluwer Academic Publishers, 1999).
  8. U. Hebisch and H.J. Weinert, Semirings: Algebraic Theory and Applications in Computer Science (World Scientific, Singapore, 1998).
  9. Y. Katsov, T.G. Nam and J. Zumbrägel, Simpleness of Leavitt path algebras with coefficients in a commutative semiring, Semigroup Forum 94 (2016) 481–499.
    https://doi.org/10.1007/s00233-016-9781-1
  10. W.G. Leavitt, The module type of a ring, Trans. Amer. Math. Soc. 42 (1962) 113–130.
    https://doi.org/10.1090/S0002-9947-1962-0132764-X
  11. M.K. Sen and M.R. Adhikari, On maximal $k$-ideals of semirings, Proc. Amer. Math. Soc. 118 (1993) 699–703.
    https://doi.org/10.1090/S0002-9939-1993-1132423-6
  12. M.K. Sen and A.K. Bhuniya, On additive idempotent $k$-regular semirings, Bull. Cal. Math. Soc. 93 (2001) 371–384.
  13. R. Sen Gupta, S.K. Maity and M.K. Sen, Leavitt path algebras with coefficients in a Clifford semifield, Comm. Algebra 47 (2019) 660–675.
    https://doi.org/10.1080/00927872.2018.1492589
  14. M. Tomforde, Leavitt path algebras with coefficients in a commutative ring, J. Pure Appl. Alg. 215 (2011) 471–484.
    https://doi.org/10.1016/j.jpaa.2010.04.031

Close