
Discussiones Mathematicae General Algebra and Applications 26 (2006) 85–109 doi:10.7151/dmgaa.1106

REGULAR ELEMENTS AND GREEN'S RELATIONS IN MENGER ALGEBRAS OF TERMS

Klaus Denecke

University of Potsdam, Institute of Mathematics Am Neuen Palais, 14415 Potsdam, Germany

e-mail: kdenecke@rz.uni-potsdam.de

AND

PRAKIT JAMPACHON

KhonKaen University, Department of Mathematics KhonKaen, 40002 Thailand

e-mail: prajam@.kku.ac.th

Abstract

Defining an (n+1)-ary superposition operation S^n on the set $W_{\tau}(X_n)$ of all n-ary terms of type τ , one obtains an algebra $n-clone \ \tau := (W_{\tau}(X_n); S^n, x_1, \ldots, x_n)$ of type $(n+1,0,\ldots,0)$. The algebra $n-clone \ \tau$ is free in the variety of all Menger algebras ([9]). Using the operation S^n there are different possibilities to define binary associative operations on the set $W_{\tau}(X_n)$ and on the cartesian power $W_{\tau}(X_n)^n$. In this paper we study idempotent and regular elements as well as Green's relations in semigroups of terms with these binary associative operations as fundamental operations.

Keywords: term, superposition of terms, Menger algebra, regular element, Green's relations.

2000 Mathematics Subject Classification: 08A35, 08A40, 08A70.

References

- [1] K. Denecke, Stongly Solid Varieties and Free Generalized Clones, Kyungpook Math. J. 45 (2005), 33–43.
- [2] K. Denecke and S.L. Wismath, *Universal Algebra and Applications in Theoretical Computer Science*, Chapman & Hall/CRC, Boca Raton, London, New York, Washington, D.C., 2002.
- [3] K. Denecke and S.L. Wismath, Complexity of Terms, Composition and Hypersubstitution, Int. J. Math. Math. Sci. 15 (2003), 959–969.
- [4] K. Denecke and P. Jampachon, N-solid varieties and free Menger algebras of rank n, East-West Journal of Mathematics 5 (1) (2003), 81–88.
- [5] K. Denecke and P. Jampachon, Clones of Full Terms, Algebra Discrete Math. 4 (2004), 1–11.
- [6] K. Denecke and J. Koppitz, *M-solid Varieties of Algebras*, Advances in Mathematics, Springer Science+Business Media, Inc., 2006.
- [7] J.M. Howie, Fundamentals of Semigroup Theory, Oxford Science Publications, Clarendon Press, Oxford 1995.
- [8] K. Menger, The algebra of functions: past, present, future, Rend. Mat. 20 (1961), 409–430.
- [9] B.M. Schein and V.S. Trohimenko, Algebras of multiplace functions, Semi-group Forum 17 (1979), 1–64.
- [10] V.S. Trohimenko, $v\text{-}regular\ Menger\ algebras},$ Algebra Univers. $\mathbf{38}\ (1997),$ 150--164.

Received July 2005 Revised August 2005