PDF
SUBDIRECTLY IRREDUCIBLE
Discussiones Mathematicae General Algebra and Applications 25(2) (2005)
235-257
DOI: https://doi.org/10.7151/dmgaa.1101
SUBDIRECTLY IRREDUCIBLE
NON-IDEMPOTENT LEFT SYMMETRIC
LEFT DISTRIBUTIVE GROUPOIDS
Emil Jerábek1, Tomás Kepka2 and David Stanovský2
1Mathematical Institute, Academy of Sciences
Prague, Czech Republic
2Charles University in Prague, Czech Republic
e-mail: | jerabek@math.cas.cz |
e-mail: | kepka@karlin.mff.cuni.cz |
e-mail: | stanovsk@karlin.mff.cuni.cz |
Abstract
We study groupoids satisfying the identities x·xy = y and x·yz = xy·xz. Particularly, we focus our attention at subdirectlyirreducible ones, find a description and charecterize small ones.Keywords: groupoid, left distributive, left symmetric, subdirectly irreducible.
2000 Mathematics Subject Classification: Primary: 20N02;Secondary: 08B20.
References
[1] | S. Burris and H.P. Sankappanavar, A course in universal algebra, GTM 78, Springer 1981. |
[2] | P. Dehornoy, Braids and self-distributivity, Progress in Math. 192, Birkhäuser Basel 2000. |
[3] | D. Joyce, Simple quandles, J. Algebra 79 (1982), 307-318. |
[4] | T. Kepka, Non-idempotent left symmetric left distributive groupoids, Comment. Math. Univ. Carolinae 35 (1994), 181-186. |
[5] | T. Kepka and P. Nemec, Selfdistributive groupoids. A1. Non-indempotent left distributive groupoids, Acta Univ. Carolin. Math. Phys. 44/1 (2003), 3-94. |
[6] | H. Nagao, A remark on simple symmetric sets, Osaka J. Math. 16 (1979), 349-352. |
[7] | B. Roszkowska-Lech, Subdirectly irreducible symmetric idempotent entropic groupoids, Demonstratio Math. 32/3 (1999), 469-484. |
[8] | D. Stanovský, A survey of left symmetric left distributive groupoids, available at http://www.karlin.mff.cuni.cz/~stanovsk/math/survey.pdf |
[9] | D. Stanovský, Left symmetric left distributive operations on a group, Algebra Universalis 54/1 (2003), 97-103. |
[10] | M. Takasaki, Abstractions of symmetric functions, Tôhoku Math. Journal 49 (1943), 143-207 (Japanese). |
Received 27 July 2005
Close