DM-GAA

ISSN 1509-9415 (print version)

ISSN 2084-0373 (electronic version)

https://doi.org/10.7151/dmgaa

Discussiones Mathematicae - General Algebra and Applications

Cite Score (2023): 0.6

SJR (2023): 0.214

SNIP (2023): 0.604

Index Copernicus (2022): 121.02

H-Index: 5

Discussiones Mathematicae - General Algebra and Applications

PDF

Discussiones Mathematicae General Algebra and Applications 25(2) (2005) 221-233
DOI: https://doi.org/10.7151/dmgaa.1100

PRESOLID VARIETIES OF n-SEMIGROUPS

Avapa Chantasartrassmee

The University of the Thai Chamber of Commerce
Department of Mathematics
126/1 Vibhavadee-Rangsit Road
Din Daeng Bangkok 10400, Thailand

e-mail: avapa_a@hotmail.com

Jörg Koppitz

University of Potsdam, Institute of Mathematics
Am Neuen Palais, 14415 Potsdam, Germany

e-mail: koppitz@rz.uni-potsdam.de

Abstract

The class of all M-solid varieties of a given type t forms a complete sublattice of the lattice L(t) of all varieties of algebrasof type t. This gives a tool for a better description of the latticeL(t) by characterization of complete sublattices. In particular, this was done for varieties of semigroups by L. Polák ([10]) as well as by Denecke and Koppitz ([4], [5]). Denecke and Hounnon characterized M-solid varieties of semirings ([3]) and M-solid varieties of groups were characterized by Koppitz ([9]). In the present paper we will do it for varieties of n-semigroups. An n-semigroup is an algebra of type (n), where the operation satisfies the [i,j]-associative laws for 1 Ł i ≤ j Ł n, introduced by Dörtnte ([2]). It is clear that the notion of a 2-semigroup is the same as the notion of a semigroup. Here we will consider the case n ł 3.

Keywords: hypersubstitution, presolid, n-semigroup.

2000 Mathematics Subject Classification: 08B15, 08B25.

References

[1] V. Budd, K. Denecke and S.L. Wismath, Short-solid superassociative type (n) varieties, East-West J. of Mathematics 3 (2) (2001), 129-145.
[2] W. Dörnte, Untersuchungen über einen verallgemeinerten Gruppenbegriff, Math. Z. 29 (1928), 1-19.
[3] K. Denecke and Hounnon, All solid varieties of semirings, Journal of Algebra 248 (2002), 107-117.
[4] K. Denecke and J. Koppitz, Pre-solid varieties of semigroups, Archivum Mathematicum 31 (1995), 171-181.
[5] K. Denecke and J. Koppitz, Finite monoids of hypersubstitutions of type t = (2), Semigroup Forum 56 (1998), 265-275.
[6] K. Denecke and M. Reichel, Monoids of hypersubstitutions and M-solid varieties, Contributions to General Algebra 9 (1995), 117-126.
[7] K. Denecke, J. Koppitz and S.L. Wismath, Solid varieties of arbitrary type, Algebra Universalis 48 (2002), 357-378.
[8] K. Denecke and S.L. Wismath, Hyperidentities and clones, Gordon and Breach Scientific Publisher, 2000.
[9] J. Koppitz, Hypersubstitutions and groups, Novi Sad J. Math. 34 (2) (2004), 127-139.
[10] L. Polák, All solid varieties of semigroups, Journal of Algebra 219 (1999), 421-436.
[11] J. Płonka, Proper and inner hypersubstitutions of varieties, p. 106-115 in: "Proceedings of the International Conference: `Summer School on General Algebra and Ordered Sets', Olomouc 1994", Palacký University, Olomouc 1994.

Received 15 July 2005


Close