PDF
Discussiones Mathematicae General Algebra and Applications 25(1) (2005)
103-118
DOI: https://doi.org/10.7151/dmgaa.1094
SEMIGROUPS DEFINED BY AUTOMATON EXTENSION MAPPINGS
Mirosław Osys
Silesian University of Technology
Institute of Mathematics,
Kaszubska 23, 44-100 Gliwice, Poland
e-mail: Miroslaw.Osys@polsl.pl
Abstract
We study semigroups generated by the restrictions of automaton extension (see, e.g., [3]) and give a characterization of automaton extensions that generate finite semigroups.Keywords: automaton mapping, Mealy automaton, semigroup.
2000 Mathematics Subject Classification: 68Q70, 68Q45, 20M35.
References
[1] | K. Culik, II, Construction of the Automaton Mapping, (Russian), Apl. Mat. 10 (1965), 459-468. |
[2] | S. Eilenberg, Automata, Languages and Machines, Volume A, Academic Press, New York 1974. |
[3] | V.M. Glushkov, Abstract theory of automata, (Russian), Uspehi Mat. Nauk 16 no. 5 (101), (1961), 3-62. |
[4] | R.I. Grigorchuk, V.V. Nekrashevich and V.I. Sushchanskii, Automata,Dynamical Systems, and Groups, Proc. Steklov Inst. Math. 231 (2000), 128-203. |
[5] | B. Mikolajczak et al. (eds.) , Algebraic and Structural Automata Theory, Annals of Discrete Mathematics, vol. 44, North-Holland Publ. Co., Amsterdam 1991. |
[6] | M. Osys, Automaton extensions of mappings on the set of words defined by finite Mealy automata, Algebra Discrete Math., to appear (preprint 2005). |
[7] | M. Osys, Automaton extensions of transformations of free monoid over finite alphabet (Polish), Zeszyty Nauk. Politech. Śląskiej, Seria Math.-Fiz., no. 91, (2004). |
[8] | G.N. Raney, Sequential functions, J. Assoc. Comput. Math. 5 (1958), 177-180. |
[9] | Y. Sheng, Regular languages, p. 41-110 in: Handbook of Formal Languages, vol. 1, Springer-Verlag, Berlin 1997. |
Received 12 May 2005
Revised 19 July 2005
Close