Discussiones Mathematicae General Algebra and Applications 25(1) (2005)
23-37
DOI: https://doi.org/10.7151/dmgaa.1091
HYPERIDENTITIES IN TRANSITIVE GRAPH ALGEBRAS
Tiang Poomsa-ard, Jeerayut Wetweerapong and Charuchai Samartkoon
Department of Mathematics, Faculty of Science,
Khon Kaen University,
Khon Kaen 40002, Thailand
e-mails: tiang@kku.ac.th, wjeera@kku.ac.th
Abstract
Graph algebras establish a connection between directed graphs without multiple edges and special universal algebras of type (2,0). We say that a graph G satisfies an identity s » t if the corresponding graph algebra A(G) satisfies s » t. A graph G = (V,E) is called a transitive graph if the corresponding graph algebra A(G) satisfies the equation x(yz) » (xz)(yz). An identity s » t of terms s and t of any type t is called a hyperidentity of an algebra A if whenever the operation symbols occurring in s and t are replaced by any term operations of A of the appropriate arity, the resulting identities hold in A.In this paper we characterize transitive graph algebras, identities and hyperidentities in transitive graph algebras.
Keywords: identity, hyperidentity, term, normal form term, binary algebra, graph algebra, transitive graph algebra.
2000 Mathematics Subject Classification: 08B05, 08B99, 08C99, 03C05, 05C99.
References
[1] | K. Denecke and T. Poomsa-ard, Hyperidentities in graph algebras, p. 59-68 in: "Contributions to General Algebra and Applications in Discrete Mathematics", Shaker-Verlag, Aachen 1997. |
[2] | K. Denecke and M. Reichel, Monoids of hypersubstitutions and M-solid varieties, p. 117-125 in: "Contributions to General Algebra", vol. 9, Verlag Hölder-Pichler-Tempsky, Vienna 1995. |
[3] | E.W. Kiss, R. Pöschel and P. Pröhle, Subvarieties of varieties generated by graph algebras, Acta Sci. Math. (Szeged) 54 (1990), 57-75. |
[4] | J. Płonka, Hyperidentities in some of vareties, p. 195-213 in: "General Algebra and Discrete Mathematics", Heldermann Verlag, Lemgo 1995. |
[5] | J. Płonka, Proper and inner hypersubstitutions of varieties, p. 106-115 in: "Proceedings of the International Conference: `Summer School on General Algebra and Ordered Sets', Olomouc 1994", Palacký University, Olomouc 1994. |
[6] | T. Poomsa-ard, Hyperidentities in associative graph algebras, Discuss. Math. - Gen. Algebra Appl. 20 (2000), 169-182. |
[7] | R. Pöschel, The equational logic for graph algebras, Z. Math. Logik Grundl. Math. 35 (1989), 273-282. |
[8] | R. Pöschel, Graph algebras and graph varieties, Algebra Universalis 27 (1990), 559-577. |
[9] | C.R. Shallon, Nonfinitely Based Finite Algebras Derived from Lattices, Ph.D. Thesis, University of California, Los Angeles, CA, 1979. |
Received 30 December 2004
Revised 3 March 2005
Close