Discussiones Mathematicae General Algebra and Applications 24(1) (2004) 137-147
DOI: https://doi.org/10.7151/dmgaa.1081
ORTHORINGS
Ivan Chajda
Palacký University, Olomouc |
Helmut Länger
Vienna University of Technology |
Abstract
Certain ring-like structures, so-called orthorings, are introduced which are in a natural one-to-one correspondence with lattices with 0 every principal ideal of which is an ortholattice. This correspondence generalizes the well-known bijection between Boolean rings and Boolean algebras. It turns out that orthorings have nice congruence and ideal properties.Keywords: ortholattice, generalized ortholattice, sectionally complemented lattice, orthoring, arithmetical variety, weakly regular variety, congruence kernel, ideal term, basis of ideal terms, subtractive term.
2000 Mathematics Subject Classification: 16Y99, 06C15, 81P10.
References
[1] | G. Birkhoff, Lattice Theory, third edition, AMS Colloquium Publ. 25, Providence, RI, 1979. |
[2] | I. Chajda, Pseudosemirings induced by ortholattices, Czechoslovak Math. J. 46 (1996), 405-411. |
[3] | I. Chajda and G. Eigenthaler, A note on orthopseudorings and Boolean quasirings, Österr. Akad. Wiss. Math.-Natur. Kl. Sitzungsber. II 207 (1998), 83-94. |
[4] | I. Chajda, G. Eigenthaler and H. Länger, Congruence Classes in Universal Algebra, Heldermann Verlag, Lemgo 2003. |
[5] | I. Chajda and H. Länger, Ring-like operations in pseudocomplemented semilattices, Discuss. Math. Gen. Algebra Appl. 20 (2000), 87-95. |
[6] | I. Chajda and H. Länger, Ring-like structures corresponding to MV-algebras via symmetric difference, Österr. Akad. Wiss. Math.-Natur. Kl. Sitzungsber. II, to appear. |
[7] | I. Chajda, H. Länger and M. Maczy\'nski, Ring-like structures corresponding to generalized orthomodular lattices, Math. Slovaca 54 (2004), 143-150. |
[8] | G. Dorfer, A. Dvurecenskij and H. Länger, Symmetric difference in orthomodular lattices, Math. Slovaca 46 (1996), 435-444. |
[9] | D. Dorninger, H. Länger and M. Maczy\'nski, The logic induced by a system of homomorphisms and its various algebraic characterizations, Demonstratio Math. 30 (1997), 215-232. |
[10] | D. Dorninger, H. Länger and M. Maczy\'nski, On ring-like structures occurring in axiomatic quantum mechanics, Österr. Akad. Wiss. Math.-Natur. Kl. Sitzungsber. II 206 (1997), 279-289. |
[11] | D. Dorninger, H. Länger and M. Maczy\'nski, On ring-like structures induced by Mackey's probability function, Rep. Math. Phys. 43 (1999), 499-515. |
[12] | D. Dorninger, H. Länger and M. Maczy\'nski, Lattice properties of ring-like quantum logics, Intern. J. Theor. Phys. 39 (2000), 1015-1026. |
[13] | D. Dorninger, H. Länger and M. Maczy\'nski, Concepts of measures on ring-like quantum logics, Rep. Math. Phys. 47 (2001), 167-176. |
[14] | D. Dorninger, H. Länger and M. Maczy\'nski, Ring-like structures with unique symmetric difference related to quantum logic, Discuss. Math. General Algebra Appl. 21 (2001), 239-253. |
[15] | G. Grätzer, General Lattice Theory, second edition, Birkhäuser Verlag, Basel 1998. |
[16] | J. Hedlíková, Relatively orthomodular lattices, Discrete Math. 234 (2001), 17-38. |
[17] | M. F. Janowitz, A note on generalized orthomodular lattices, J. Natur. Sci. Math. 8 (1968), 89-94. |
[18] | H. Länger, Generalizations of the correspondence between Boolean algebras and Boolean rings to orthomodular lattices, Tatra Mt. Math. Publ. 15 (1998), 97-105. |
[19] | H. Werner, A Mal'cev condition for admissible relations, Algebra Universalis 3 (1973), 263. |
Received 2 March 2004
Revised 9 June 2004
Close