PDF
Discussiones Mathematicae General Algebra and Applications 24(1) (2004) 75-94
DOI: https://doi.org/10.7151/dmgaa.1077
DISTRIBUTIVE LATTICES WITH A GIVEN SKELETON
Joanna Grygiel
Institute of Mathematics and Computer Science,
Pedagogical University of Czestochowa
e-mail: j.grygiel@wsp.czest.pl
Abstract
We present a construction of finite distributive lattices with a given skeleton. In the case of an H-irreducible skeleton K the construction provides all finite distributive lattices based on K, in particular the minimal one.Keywords: distributive lattice, skeleton, gluing, tolerance relation, skeleton torelance, K-atlas, H-irreducibility.
2000 Mathematics Subject Classification: 06D05, 06C05.
References
[1] | H.J. Bandelt, Tolerance relations of lattices, Bull. Austral. Math. Soc. 23 (1981), 367-381. |
[2] | G. Bartenschlager, Free bounded distributive lattices generated by finite ordered sets, Ph.D. Thesis, TH Darmstadt 1994. |
[3] | J. Chajda and B. Zelinka, Lattices of tolerances, Casopis Pest. Mat. 102 (1977), 10-24. |
[4] | G. Czedli, Factor lattices by tolerances, Acta Sci. Math. (Szeged) 44 (1982), 35-42. |
[5] | A. Day and Ch. Herrmann, Gluings of modular lattices, Order 5 (1988), 85-101. |
[6] | B. Ganter and R. Wille, Formal concept analysis. Mathematical Foundations, Springer-Verlag, Berlin 1999. |
[7] | G. Grätzer, General Lattice Theory, Birkhäuser Verlag, Berlin, 1978. |
[8] | J. Grygiel, On gluing of lattices, Bull. Sect. Logic 32 no. 1/2 (2003), 27-32. |
[9] | M. Hall and R.P. Dilworth, The embedding problem for modular lattices,Ann. of Math. 45 (1944), 450-456. |
[10] | Ch. Herrmann, S-verklebte Summen von Verbänden, Math. Z. 130 (1973), 255-274. |
[11] | Ch. Herrmann, Alan Day's work on modular and Arguesian lattices, Algebra Universalis 34 (1995), 35-60. |
[12] | R. Wille, The skeletons of free distributive lattices, Discrete Math. 88 (1991), 309-320. |
Received 25 October 2003
Revised 12 February 2004
Close