PDF
Keywords: power index, index of convergence, period, Boolean matrix.
2000 Mathematics Subject Classification: 15A33, 05C50.
Discussiones Mathematicae General Algebra and Applications 24(1) (2004) 53-61
DOI: https://doi.org/10.7151/dmgaa.1075
POWER INDICES OF TRACE ZERO SYMMETRIC BOOLEAN MATRICES
Bo Zhou
Department of Mathematics,
South China Normal University,
Guangzhou 510631, P. R. China
e-mail: zhoubo@scnu.edu.cn
Abstract
The power index of a square Boolean matrix A is the least integer d such that Ad is a linear combination of previous nonnegative powers of A. We determine the maximum power indices for the class of n×n primitive symmetric Boolean matrices of trace zero, the class of n×n irreducible nonprimitive symmetric Boolean matrices, and the class of n×n reducible symmetric Boolean matrices of trace zero, and characterize the extreme matrices respectively.Keywords: power index, index of convergence, period, Boolean matrix.
2000 Mathematics Subject Classification: 15A33, 05C50.
References
[1] | M. Gavalec, Computing matrix period in max-min algebra, Discrete Appl. Math. 75 (1997), 63-70. |
[2] | D.A. Gregory, N.J. Pullman and S. Kirkland, On the dimension of the algebra generated by a Boolean matrix, Linear and Multilinear Algebra 38 (1994), 131-144. |
[3] | B. Liu, B.D. McKay, N.C. Wormald, and K. Zhang, The exponent set of symmetric primitive (0,1) matrices with zero trace, Linear Algebra Appl. 133 (1990), 121-131. |
[4] | S.W. Neufeld, The concept of diameter in exponents of symmetric primitive graphs, Ars Combin. 51 (1999), 129-142. |
[5] | G. Ricci, Boolean matrices Ľ neither Boolean nor matrices, Discuss. Math. Gen. Algebra Appl. 20 (2000), 141-151. |
[6] | J. Shao, The exponent set of symmetric primitive matrices, Sci. Sinica Ser. A 30 (1987), 348-358. |
[7] | J. Shao and Q. Li, On the index of maximum density for irreducible Boolean matrices, Discrete Appl. Math. 21 (1988), 147-156. |
[8] | B. Zhou, Exponents of primitive graphs, Australas. J. Combin. 28 (2003), 67-72. |
Received 15 July 2003
Revised 12 January 2004
Close