DM-GAA

ISSN 1509-9415 (print version)

ISSN 2084-0373 (electronic version)

https://doi.org/10.7151/dmgaa

Discussiones Mathematicae - General Algebra and Applications

Cite Score (2023): 0.6

SJR (2023): 0.214

SNIP (2023): 0.604

Index Copernicus (2022): 121.02

H-Index: 5

Discussiones Mathematicae - General Algebra and Applications

PDF

Discussiones Mathematicae General Algebra and Applications 23(2) (2003) 149-161
DOI: https://doi.org/10.7151/dmgaa.1070

ON THE CHARACTERISATION OF MAL'TSEV AND JÓNSSON-TARSKI ALGEBRAS

Jonathan D.H. Smith

Department of Mathematics
Iowa State University
Ames, IA 50011, USA
e-mail:
jdhsmith@math.iastate.edu

Abstract

There are very strong parallels between the properties of Mal'tsev and Jónsson-Tarski algebras, for example in the good behaviour of centrality and in the factorization of direct products. Moreover, the two classes between them include the majority of algebras that actually arise ``in nature''. As a contribution to the research programme building a unified theory capable of covering the two classes, along with other instances of good centrality and factorization, the paper presents a common framework for the characterisation of Mal'tsev and Jónsson-Tarski algebras. Mal'tsev algebras are characterized by simplicial identities in the product complex of an algebra. In the dual of a pointed variety, a simplicial object known as the pointed complex is then constructed. The basic simplicial Mal'tsev identity in the pointed complex characterises Jónsson-Tarski algebras. Higher-dimensional simplicial Mal'tsev identities in the pointed complex are characteristic of a class of algebras lying properly between Goldie and Jónsson-Tarski algebras.

Keywords: Mal'tsev variety, Mal'tsev algebra, Jónsson-Tarski variety, Jónsson-Tarski algebra, Goldie variety, Goldie algebra, congruence permutability, simplicial object.

2000 Mathematics Subject Classification: 08B05, 08C05, 18G30.

References

[1]J. Duskin, Simplicial Methods and the Interpretation of ``Triple'' Cohomology, Mem. Amer. Math. Soc., No. 163, 1975.
[2]A.W. Goldie, On direct decompositions. I, and II, Proc. Cambridge Philos. Soc. 48 (1952), 1-34.
[3]M. Gran and M.C. Pedicchio, n-Permutable locally finite presentable categories, Theory Appl. Categ. 8 (2001), 1-15.
[4]H.-P. Gumm, Geometrical Methods in Congruence Modular Varieties, Mem. Amer. Math. Soc., No. 286, 1983.
[5]J. Hagemann and C. Herrmann, A concrete ideal multiplication for algebraic systems and its relation to congruence distributivity, Arch. Math. (Basel) 32 (1979), 234-245.
[6]J. Hagemann and A. Mitscke, On n-permutable congruences, Algebra Universalis 3 (1973), 8-12.
[7]B. Jónsson and A. Tarski, Direct Decompositions of Finite Algebraic Systems, Notre Dame Mathematical Lectures, Notre Dame, IN, 1947.
[8]S. Mac Lane, Categories for the Working Mathematician, Springer-Verlag, New York, NY, 1971.
[9]A.I. Mal'tsev, K obshche teorii algebraicheskikh sistem, Mat. Sb. (N.S.) 35 (77) (1954), 3-20.
[10]A.I. Mal'cev, On the general theory of algebraic systems, (translation of [] by H. Alderson), Transl. Amer. Math. Soc. 27 (1963), 125-140.
[11]J.D.H. Smith, Mal'cev Varieties, Springer-Verlag, Berlin 1976.
[12]J.D.H. Smith, Centrality, Abstr. Amer. Math. Soc. 1 (1980), 774-A21.
[13]J.D.H. Smith and A.B. Romanowska, Post-Modern Algebra, Wiley, New York, NY, 1999.
[14]S.T. Tschantz, More conditions equivalent to congruence modularity, pp. 270-282 in: ``Universal Algebra and Lattice Theory,'' Springer-Verlag, Berlin 1985.

Received 16 May 2003


Close