DM-GAA

ISSN 1509-9415 (print version)

ISSN 2084-0373 (electronic version)

https://doi.org/10.7151/dmgaa

Discussiones Mathematicae - General Algebra and Applications

Cite Score (2023): 0.6

SJR (2023): 0.214

SNIP (2023): 0.604

Index Copernicus (2022): 121.02

H-Index: 5

Discussiones Mathematicae - General Algebra and Applications

PDF

Discussiones Mathematicae General Algebra and Applications 23(2) (2003) 125-137
DOI: https://doi.org/10.7151/dmgaa.1068

RANK AND PERIMETER PRESERVER OF RANK-1 MATRICES OVER MAX ALGEBRA

 Seok-Zun Song  and Kyung-Tae Kang

Department of Mathematics, Cheju National University
Jeju 690-756, Republic of Korea
e-mail: szsong@cheju.ac.kr
e-mail:
kangkt@cheju.ac.kr

Abstract

For a rank-1 matrix A =  abt over max algebra, we define the perimeter of A as the number of nonzero entries in both a and b. We characterize the linear operators which preserve the rank and perimeter of rank-1 matrices over max algebra. That is, a linear operator T preserves the rank and perimeter of rank-1 matrices if and only if it has the form T(A) = U ⊗ A ⊗ V , or T(A) = U⊗ At ⊗ V with some monomial matrices U and V.

Keywords: max algebra; semiring; linear operator; monomial; rank; dominate; perimeter; (U,V)-operator.

2000 Mathematics Subject Classification: 15A03, 15A04, 12K10, 16Y60.

References

[1]R.B. Bapat, A max version of the Perron-Frebenius theorem, Linear Algebra Appl. 275-276 (1998), 3-18.
[2]R.B. Bapat, S. Pati and S.-Z. Song, Rank preservers of matrices over max algebra, Linear and Multilinear Algebra 48 (2000), 149-164.
[3]L.B. Beasley and N.J. Pullman, Boolean rank-preserving operators and Boolean rank-1 spaces, Linear Algebra Appl. 59 (1984), 55-77.
[4]L.B. Beasley, S.-Z. Song and S.-G. Lee, Zero term rank preservers, Linear and Multilinear Algebra 48 (2001), 313-318.
[5]S.-Z. Song and S.-R. Park, Maximal column rank preservers of fuzzy matrices, Discuss. Math. - Gen. Algebra Appl. 21 (2001), 207-218.

Received 24 April 2003  


Close