PDF
Discussiones Mathematicae General Algebra and Applications 23(2) (2003) 125-137
DOI: https://doi.org/10.7151/dmgaa.1068
RANK AND PERIMETER PRESERVER OF RANK-1 MATRICES OVER MAX ALGEBRA
Seok-Zun Song and Kyung-Tae Kang
Department of Mathematics, Cheju National University
Jeju 690-756, Republic of Korea
e-mail:
szsong@cheju.ac.kr
e-mail:
kangkt@cheju.ac.kr
Abstract
For a rank-1 matrix A = a ⊗ bt over max algebra, we define the perimeter of A as the number of nonzero entries in both a and b. We characterize the linear operators which preserve the rank and perimeter of rank-1 matrices over max algebra. That is, a linear operator T preserves the rank and perimeter of rank-1 matrices if and only if it has the form T(A) = U ⊗ A ⊗ V , or T(A) = U⊗ At ⊗ V with some monomial matrices U and V.Keywords: max algebra; semiring; linear operator; monomial; rank; dominate; perimeter; (U,V)-operator.
2000 Mathematics Subject Classification: 15A03, 15A04, 12K10, 16Y60.
References
[1] | R.B. Bapat, A max version of the Perron-Frebenius theorem, Linear Algebra Appl. 275-276 (1998), 3-18. |
[2] | R.B. Bapat, S. Pati and S.-Z. Song, Rank preservers of matrices over max algebra, Linear and Multilinear Algebra 48 (2000), 149-164. |
[3] | L.B. Beasley and N.J. Pullman, Boolean rank-preserving operators and Boolean rank-1 spaces, Linear Algebra Appl. 59 (1984), 55-77. |
[4] | L.B. Beasley, S.-Z. Song and S.-G. Lee, Zero term rank preservers, Linear and Multilinear Algebra 48 (2001), 313-318. |
[5] | S.-Z. Song and S.-R. Park, Maximal column rank preservers of fuzzy matrices, Discuss. Math. - Gen. Algebra Appl. 21 (2001), 207-218. |
Received 24 April 2003