DM-GAA

ISSN 1509-9415 (print version)

ISSN 2084-0373 (electronic version)

https://doi.org/10.7151/dmgaa

Discussiones Mathematicae - General Algebra and Applications

Cite Score (2023): 0.6

SJR (2023): 0.214

SNIP (2023): 0.604

Index Copernicus (2022): 121.02

H-Index: 5

Discussiones Mathematicae - General Algebra and Applications

PDF

Discussiones Mathematicae General Algebra and Applications 23(1) (2003) 13-18
DOI: https://doi.org/10.7151/dmgaa.1060

A SCHEME FOR CONGRUENCE SEMIDISTRIBUTIVITY 

Ivan Chajda1

Department of Algebra and Geometry
Palacký University of Olomouc
Tomkova 40, CZ-77900 Olomouc, Czech Republic
e-mail: chajda@risc.upol.cz

Eszter K. Horváth2

Bolyai Institute, University of Szeged
Aradi vértanúk tere 1, H-6720 Szeged, Hungary
e-mail:
horeszt@math.u-szeged.hu

Abstract

A diagrammatic statement is developed for the generalized semidistributive law in case of single algebras assuming that their congruences are permutable. Without permutable congruences, a diagrammatic statement is developed for the ∧ -semidistributive law.

Keywords: ∧ -semidistributivity, generalized semidistribitive law, triangular scheme.

2000 Mathematics Subject Classification: 08A30, 08B10, 06D99.

References

[1]I. Chajda, G. Eigenthaler and H. Länger, Congruence Classes in Universal Algebra, Heldermann Verlag, Lemgo 2003.
[2]I. Chajda and E.K. Horváth, A triangular scheme for congruence distributivity, Acta Sci. Math. (Szeged) 68 (2002), 29-35.
[3]G. Czédli, Weak congruence semidistributivity laws and their conjugates, Acta Math. Univ. Comenian. 68 (1999), 153-170.
[4]W. Geyer, Generalizing semidistributivity, Order 10 (1993), 77-92.
[5]H.P. Gumm, Geometrical methods in congruence modular algebras, Mem. Amer. Math. Soc. 45 (1983), no. 286, viii+79 pp.
[6]K.A. Kearnes and Á. Szendrei, The relationship between two commutators, Internat. J. Algebra Comput. 8 (1998), 497-53.
[7]P. Lipparini, Characterization of varieties with a difference term, II: neutral = meet semidistributive, Canadian Math. Bull. 41 (1988), 318-327.

Received 23 September 2002
Revised 14 May 2003 


1The research was supported by the Czech Government MSM 153 100011.
2
The research was supported by OTKA T037877.


Close