DM-GAA

ISSN 1509-9415 (print version)

ISSN 2084-0373 (electronic version)

https://doi.org/10.7151/dmgaa

Discussiones Mathematicae - General Algebra and Applications

Cite Score (2023): 0.6

SJR (2023): 0.214

SNIP (2023): 0.604

Index Copernicus (2022): 121.02

H-Index: 5

Discussiones Mathematicae - General Algebra and Applications

PDF

Discussiones Mathematicae General Algebra and Applications 22(1) (2002) 87-100
DOI: https://doi.org/10.7151/dmgaa.1049

EQUATIONAL BASES FOR WEAK MONOUNARY VARIETIES

 Grzegorz Bińczak

Institute of Mathematics, Warsaw University of Technology
pl. Politechniki 1, 00-661 Warszawa, Poland
e-mail: binczak@mini.pw.edu.pl

Abstract

It is well-known that every monounary variety of total algebras has one-element equational basis (see [5]). In my paper I prove that every monounary weak variety has at most 3-element equational basis. I give an example of monounary weak variety having 3-element equational basis, which has no 2-element equational basis.

Keywords: partial algebra, weak equation, weak variety, regular equation, regular weak equational theory, monounary algebras.

2000 AMS Mathematics Subject Classifications: 08A55, 08B05.

Bibliography

[1]
G. Bińczak, A characterization theorem for weak varieties, Algebra Universalis 45 (2001), 53-62.
[2]
P. Burmeister, A Model - Theoretic Oriented Approach to Partial Algebras, Akademie-Verlag, Berlin 1986.
[3]
G. Grätzer, Universal Algebra, (the second edition), Springer-Verlag, New York 1979.
[4]
H. Höft, Weak and strong equations in partial algebras, Algebra Universalis 3 (1973), 203-215.
[5]
E. Jacobs and R. Schwabauer, The lattice of equational classes of algebras with one unary operation, Amer. Math. Monthly 71 (1964), 151-155. 
[6]
L. Rudak, A completness theorem for weak equational logic, Algebra Universalis 16 (1983), 331-337.
[7]
L. Rudak, Algebraic characterization of conflict-free varieties of partial algebras, Algebra Universalis 30 (1993), 89-100.

Received 19 April 2002
Revised 2 July 2002


Close