Discussiones
Mathematicae General Algebra and Applications 22(1) (2002) 39-46
DOI: https://doi.org/10.7151/dmgaa.1046
POWER-ORDERED SETS
Martin R. Goldstern
Technische Universität Wien |
Dietmar Schweigert
FB Mathematik, Universität Kaiserslautern |
Abstract
We define a natural ordering on the power set P(Q) of any finite partial order Q, and we characterize those partial orders Q for which P(Q) is a distributive lattice under that ordering.Keywords: partial order, chain, linear order, antichain, power set, power-ordered set, distributive lattice, anti-automorphism.
2000 AMS Mathematics Subject Classifications: 06A06, O6A10.
References
[1]
|
[2]
|
Received 29 January 2002
Close