DM-GAA

ISSN 1509-9415 (print version)

ISSN 2084-0373 (electronic version)

https://doi.org/10.7151/dmgaa

Discussiones Mathematicae - General Algebra and Applications

Cite Score (2023): 0.6

SJR (2023): 0.214

SNIP (2023): 0.604

Index Copernicus (2022): 121.02

H-Index: 5

Discussiones Mathematicae - General Algebra and Applications

PDF

Discussiones Mathematicae General Algebra and Applications 22(1) (2002) 5-23
DOI: https://doi.org/10.7151/dmgaa.1043

COMPLETION OF A HALF LINEARLY CYCLICALLY ORDERED GROUP

Stefan Cernák

Department of Mathematics, Faculty of Civil Engineering, Technical University
Vysokoskolská 4, SK-042 02 Kosice, Slovakia
e-mail: svfkm@tuke.sk

Abstract

The notion of a half lc-group G is a generalization of the notion of a half linearly ordered group. A completion of G by means of Dedekind cuts in linearly ordered sets and applying \'Swierczkowski's representation theorem of lc-groups is constructed and studied.

 Keywords: dedekind cut, cyclically ordered group, lc-group, half lc-group, completion of a half lc-group.

 2000 AMS Mathematics Subject Classifications: Primary 06F15; Secondary 20F60.

 References

[1]
S. Cernák, On the completion of cyclically ordered groups, Math. Slovaca 41 (1991), 41-49. 
[2]
M. Giraudet and F. Lucas, Groupes \grave a moitié ordonnés, Fund. Math. 139 (1991), 75-89.
[3]
J. Jakubík, On half cyclically ordered groups, Czechoslovak Math. J. (to appear). 
[4]
J. Jakubík and S. Cernák, Completion of a cyclically ordered group, Czechoslovak Math. J. 37 (112) (1987), 157-174. 
[5]
V. Novák, Cuts in cyclically ordered sets, Czechoslovak Math. J. 34 (109) (1984), 322-333. 
[6]
V. Novák and M. Novotný, On completion of cyclically ordered sets, Czechoslovak Math. J. 37 (112) (1987), 407-414.
[7]
A. Quilliot, Cyclic orders, Europan J. Combin. 10 (1989), 477-488. 
[8]
L. Rieger, On ordered and cyclically ordered groups. I, II, and III, (Czech) Vestník Královské Ceské Spolecnosti Nauk. Trida Matemat.-Prirodoved. 1946, no. 6, p. 1-31, 1947, no 1, p. 1-33, 1948, no. 1, p. 1-26. 
[9]
S. Świerczkowski, On cyclically ordered groups, Fundamenta Math. 47 (1959), 161-166.

Received 6 June 2001


Close