Discussiones
Mathematicae General Algebra and Applications 21(2) (2001) 229-237
DOI: https://doi.org/10.7151/dmgaa.1040
CONGRUENCE CLASSES IN BROUWERIAN SEMILATTICES
Ivan Chajda Palacký University of Olomouc |
Helmut Länger Technische Universität Wien |
Abstract
Brouwerian semilattices are meet-semilattices with 1 in which every element a has a relative pseudocomplement with respect to every element b, i. e. a greatest element c with aŮc Ł b. Properties of classes of reflexive and compatible binary relations, especially of congruences of such algebras are described and an abstract characterization of congruence classes via ideals is obtained.Keywords: congruence class, Brouwerian semilattice, ideal.
2000 Mathematics Subject Classification: Primary 08A30; Secondary 06A12.
References
[1] | J. Duda, Arithmeticity at 0, Czechoslovak Math. J. 37 (1987), 197-206. |
[2] | K. Fichtner, Eine Bemerkung über Mannigfaltigkeiten universeller Algebren mit Idealen, Monatsb. Deutsch. Akad. Wiss. Berlin 12 (1970), 21-25. |
[3] | P. Köhler, Brouwerian semilattices: the lattice of total subalgebras, Banach Center Publ. 9 (1982), 47-56. |
[4] | W.C. Nemitz, Implicative semi-lattices, Trans. Amer. Math. Soc. 117 (1965), 128-142. |
Received 14 August 2001
Revised 12 December 2001