DM-GAA

ISSN 1509-9415 (print version)

ISSN 2084-0373 (electronic version)

https://doi.org/10.7151/dmgaa

Discussiones Mathematicae - General Algebra and Applications

Cite Score (2023): 0.6

SJR (2023): 0.214

SNIP (2023): 0.604

Index Copernicus (2022): 121.02

H-Index: 5

Discussiones Mathematicae - General Algebra and Applications

PDF

Discussiones Mathematicae General Algebra and Applications 21(1) (2001) 105-114
DOI: https://doi.org/10.7151/dmgaa.1031

BALANCED CONGRUENCES

Ivan Chajda

Department of Algebra and Geometry
Palacký University of Olomouc
Tomkova 40, CZ-77900 Olomouc, Czech Republic

e-mail: chajda@risc.upol.cz

Günther Eigenthaler

Institut für Algebra und Computermathematik
Technische Universität Wien
Wiedner Hauptstraß e 8-10, A-1040 Wien, Austria

e-mail: g.eigenthaler@tuwien.ac.at

Abstract

Let V be a variety with two distinct nullary operations 0 and 1. An algebra \frakA ∈ V is called balanced if for each φ,ψ ∈ Con (\frakA), we have [0]φ = [0]Ψ if and only if [1]φ = [1]Ψ. The variety V is called balanced if every \frakA ∈ V is balanced. In this paper, balanced varieties are characterized by a Mal'cev condition (Theorem 3). Furthermore, some special results are given for varieties of bounded lattices.

Keywords: balanced congruence, balanced algebra, balanced variety, Mal'cev condition.

2000 Mathematics Subject Classification: Primary 08A30; Secondary 08B05.

References

[1] I. Chajda, Locally regular varieties, Acta Sci. Math. (Szeged) 64 (1998),431-435.
[2] I. Chajda and G. Eigenthaler, A remark on congruence kernels in complemented lattices and pseudocomplemented semilattices, Contributions to General Algebra 11 (1999), 55-58.
[3] G. Grätzer and E.T. Schmidt, Ideals and congruence relations in lattices, Acta Math. Sci. Hungar. 9 (1958), 137-175.
[4] A.I. Mal'cev, On the general theory of algebraic systems (Russian), Mat. Sb. 35 (1954), 3-20.

Received 27 March 2000
Revised 2 August 2000


Close