DM-GAA

ISSN 1509-9415 (print version)

ISSN 2084-0373 (electronic version)

https://doi.org/10.7151/dmgaa

Discussiones Mathematicae - General Algebra and Applications

Cite Score (2023): 0.6

SJR (2023): 0.214

SNIP (2023): 0.604

Index Copernicus (2022): 121.02

H-Index: 5

Discussiones Mathematicae - General Algebra and Applications

PDF

Discussiones Mathematicae General Algebra and Applications 21(1) (2001) 83-92
DOI: https://doi.org/10.7151/dmgaa.1029

HYPERSUBSTITUTIONS IN ORTHOMODULAR LATTICES

Ivan Chajda

Department of Algebra and Geometry
Palacký University of Olomouc
Tomkova 40, CZ-77900 Olomouc, Czech Republic

e-mail: chajda@risc.upol.cz

Helmut Länger

Technische Universität Wien
Institut für Algebra und Computermathematik
Wiedner Hauptstraß e 8-10, A-1040 Wien

e-mail: h.laenger@tuwien.ac.at

Abstract

It is shown that in the variety of orthomodular lattices every hypersubstitution respecting all absorption laws either leaves the lattice operations unchanged or interchanges join and meet. Further, in a variety of lattices with an involutory antiautomorphism a semigroup generated by three involutory hypersubstitutions is described.

Keywords: hypersubstitution, proper hypersubstitution, orthomodular lattice, absorption algebra.

2000 Mathematics Subject Classification: 08A40, 06C15.

References

[1] I. Chajda and K. Głazek, A Basic Course on General Algebra, Technical University Press, Zielona Góra 2000.
[2] K. Denecke, D. Lau, R. Pöschel, and D. Schweigert, Hyperidentities, hyperequational classes and clone congruences, Contribution to General Algebra 7 (1991), 97-118.
[3] E. Graczyńska and D. Schweigert, Hypervarieties of a given type, Algebra Universalis 27 (1990), 305-318.
[4] R. Padmanabhan and P. Penner, Bases of hyperidentities of lattices, C.R. Math. Rep. Acad. Sci. Canada 4 (1982), 9-14.
[5] J. Płonka, Proper and inner hypersubstitutions of varieties, p. 106-115 in: ``General Algebra and Ordered Sets (Horni Lipová 1994)", Palacký University, Olomouc 1994.
[6] J. Płonka, On hyperidentities of some varieties, p. 199-213 in: ``General Algebra and Discrete Mathematics (Potsdam 1993)", Heldermann-Verlag, Lemgo 1995.
[7] Z. Szylicka, Proper hypersubstitutions of normalizations and externalizations of varieties, p. 144-155 in: ``General Algebra and Ordered Sets (Horni Lipová 1994)", Palacký University, Olomouc 1994.
[8] W. Taylor, Hyperidentities and hypervarieties, Aequationes Math. 23 (1981), 30-49.

Received 1 February 2000


Close