DM-GAA

ISSN 1509-9415 (print version)

ISSN 2084-0373 (electronic version)

https://doi.org/10.7151/dmgaa

Discussiones Mathematicae - General Algebra and Applications

Cite Score (2023): 0.6

SJR (2023): 0.214

SNIP (2023): 0.604

Index Copernicus (2022): 121.02

H-Index: 5

Discussiones Mathematicae - General Algebra and Applications

PDF

Discussiones Mathematicae General Algebra and Applications 21(1) (2001) 47-55
DOI: https://doi.org/10.7151/dmgaa.1026

GENERALIZED MORPHISMS OF ABELIAN m-ARY GROUPS

A M. Gal'mak

Department of Mathematics, Technological Institute
Shmidt ave. 3, 212027 Mogilev, Belarus

Abstract

We prove that the set of all n-ary endomorphisms of an abelian m-ary group forms an (m, n) - ring.

Keywords and phrases: n-ary endomorphism, m-ary group, (m, n)-ring.

2000 Mathematics Subject Classification: Primary 20N15; Secondary 16Y99.

References

[1] G. Crombez, On (n, m)-rings, Abh. Math. Sem. Univ. Hamburg 37 (1972), 180-199.
[2] A.M. Gal'mak, Generalized morphisms of algebraic systems (Russian), Voprosy Algebry 12 (1998), 36-46.
[3] K. Głazek, Bibliography of n-groups (polyadic groups) and some group-like n-ary systems, p. 253-289 in: `` Proc. Symp. on n-ary Structures (Skopje 1982)", Macedonian Academy of Sciences and Arts, Skopje 1982.
[4] K. Głazek and B. Gleichgewicht, Abelian n-groups, p. 321-329 in: Colloq. Math. Soc. J. Bolyai, no. 29 (``Universal Algebra, Esztergom (Hungary) 1977"), North-Holland, Amsterdam 1981.
[5] E.L. Post, Polyadic groups, Trans. Amer. Math. Soc. 48 (1940), 208-350.
[6] S.A. Rusakov, Sequences of mappings and the existence of symmetric n-ary groups (Russian), p. 120-134 in: ``The Arithmetic and Subgroup Structure of Finite Groups" (Russian), Navuka i Tehnika, Minsk 1986.
[7] S.A. Rusakov, Algebraic n-ary systems (Russian), Navuka i Tehnika, Minsk 1992.
[8] J. Timm, Kommutative n-Gruppen, Dissertation, Univ. Hamburg 1967.

Received 27 June 1999
Revised 22 September 1999
Revised 2 August 2000
Revised 5 March 2001


Close