DM-GAA

ISSN 1509-9415 (print version)

ISSN 2084-0373 (electronic version)

https://doi.org/10.7151/dmgaa

Discussiones Mathematicae - General Algebra and Applications

Cite Score (2023): 0.6

SJR (2023): 0.214

SNIP (2023): 0.604

Index Copernicus (2022): 121.02

H-Index: 5

Discussiones Mathematicae - General Algebra and Applications

PDF

Discussiones Mathematicae General Algebra and Applications 20(2) (2000) 199-206
DOI: https://doi.org/10.7151/dmgaa.1017

DIOPHANTINE EQUATIONS AND CLASS NUMBERS OF IMAGINARY QUADRATIC FIELDS

Zhenfu Cao and Xiaolei Dong

Department of Mathematics, Harbin Institute of Technology
Harbin 150001, P. R. China
e-mail:zfcao@hope.hit.edu.cn

Abstract

Let A, D, K, k ∈ N with D square free and 2 | /k,B = 1,2 or 4 and μi ∈ {-1,1}(i = 1,2), and let h(-21-eD)(e = 0 or 1) denote the class number of the imaginary quadratic field Q(√{-21-eD}). In this paper, we give the all-positive integer solutions of the Diophantine equation Ax21B = K((Ay22B)/K)n, 2 | / n, n > 1 and we prove that if D > 1, then h(-21-eD) ≡ 0 (mod n), where D, and n satisfy kn-2e+1 = Dx2,x ∈ N,2 | / n, n > 1. The results are valuable for the realization of quadratic field cryptosystem.

Keywords: Diophantine equation, imaginary quadratic field, class number, cryptographic problem.

1991 Mathematics Subject Classification: 11D41, 11R11, 11R29, 94A60.

References

[1] J. Buchmann and H.C. Williams, Quadratic fields and cryptography, p. 9-25 in: ``Number Theory and Cryptography", University Press, Cambridge 1990.
[2] Z. Cao, An Erdös conjecture, Pell sequences and Diophantine equations(Chinese), J. Harbin Inst. Tech. 2 (1987), 122-124.
[3] Z. Cao, On the equation Dx2±1 = yp, xy ≠ 0 (Chinese), J. Math. Res. & Exposition 7 (1987), no. 3, p. 414.
[4] Z. Cao, On the equation axm-byn = 2 (Chinese), Chinese Sci. Bull. 35 (1990), 558-559.
[5] Z. Cao, On the Diophantine equation (axm-4c)/(abx-4c) = by2 (Chinese), J. Harbin Inst. Tech. 23 (1991), Special Issue, 110-112.
[6] Z. Cao, The Diophantine equation cx4+dy4 = zp, C.R. Math. Rep. Acad. Sci. Canada 14 (1992), 231-234.
[7] Z. Cao and A. Grytczuk, Some classes of Diophantine equations connected with McFarland's and Ma's conjectures, Discuss. Math. - Algebra and Applications 2 (2000), 193-198.
[8] G. Degert, Über die Bestimung der Grundeinheit gewisser reell-quadratischer Zahlkorper, Abh. Math. Sem. Univ. Hamburg 22 (1958), 92-97.
[9] K. Inkeri, On the diophantine equations 2y2 = 7k+1 and x2+11 = 3n, Elem. Math. 34 (1979), 119-121.
[10] V.A. Lebesgue, Sur l'impossibilitéon nombres entiers de l'équation xm = y2+1, Nouv. Ann. Math. 9 (1850), no. 1, p. 178-181.
[11] W. Ljunggren, Über die Gleichungen 1+Dx2 = 2yn und 1+Dx2 = 4yn, Norske Vid. Selsk. Forhandl. 15 (30) (1942), 115-118.
[12] R.A. Mollin, Solutions of Diophantine equations and divisibility of class numbers of complex quadratic fields, Glasgow Math. J. 38 (1996), 195-197.
[13] T. Nagell, Sur l'impossibilité de quelques équations a deux indéterminées, Norsk Matem. Forenings Skr. Serie I 13 (1923), 65-82.
[14] C. Richaud, Sur la résolution des équations x2-Ay2 = ±1, Atti Acad. Pontif. Nuovi Lincei (1866), 177-182.
[15] C. Sto/rmer, Solution compléte en nombres entiers m, n,x, y, k de l'équation m arctg 1/x + narctg1/y = kπ/4, Christiania Vid. Selsk. Skr. I, 11 (1895).
[16] D.T. Walker, On the Diophantina equation mx2-ny2 = ±1, Amer. Math. Monthly 74 (1967), 504-513.

Received 20 July 1998
Revised 30 October 2000


Close