DM-GAA

ISSN 1509-9415 (print version)

ISSN 2084-0373 (electronic version)

https://doi.org/10.7151/dmgaa

Discussiones Mathematicae - General Algebra and Applications

Cite Score (2023): 0.6

SJR (2023): 0.214

SNIP (2023): 0.604

Index Copernicus (2022): 121.02

H-Index: 5

Discussiones Mathematicae - General Algebra and Applications

PDF

Discussiones Mathematicae General Algebra and Applications 20(2) (2000) 169-182
DOI: https://doi.org/10.7151/dmgaa.1014

HYPERIDENTITIES IN ASSOCIATIVE GRAPH ALGEBRAS

Tiang Poomsa-ard

Department of Mathematics, Faculty of Science,
Khon Kaen University, Khon Kaen 40002, Thailand
e-mail: tiang@kku1.kku.ac.th

Abstract

Graph algebras establish a connection between directed graphs without multiple edges and special universal algebras of type (2,0). We say that a graph G satisfies an identity s ≈ t if the correspondinggraph algebra A(G) satisfies s ≈ t. A graph G is called associative if the corresponding graph algebra A(G) satisfies the equation (xy)z ≈ x(yz). An identity s ≈ t of terms s and t of any type τ is called a hyperidentity of an algebra A if whenever the operation symbols occurring in s and t are replaced by any term operations of A of the appropriate arity, the resulting identities hold in A.

In this paper we characterize associative graph algebras, identities in associative graph algebras and hyperidentities in associative graph algebras.

Keywords: identities, hyperidentities, associative graph algebras, terms.

1991 Mathematics Subject Classifications: 08B05, 0840, 08C10, 08C99, 03C05.

References

[1] K. Denecke and M. Reichel, Monoids of Hypersubstitutions and M-solidvarieties, Contributions to General Algebra 9 (1995), 117-125.
[2] K. Denecke and T. Poomsa-ard, Hyperidentities in graph algebras, p. 59-68 in: ``General Algebra and Aplications in Discrete Mathematics", Shaker-Verlag, Aachen 1997.
[3] E.W. Kiss, R. Pöschel, and P. Pröhle, Subvarieties of varieties generated by graph algebras, Acta Sci. Math. (Szeged) 54 (1990), 57-75.
[4] J. Ponka, Hyperidentities in some classes of algebras, preprint, 1993.
[5] J. Ponka, Proper and inner hypersubstitutions of varieties, p. 106-116 in: ``General Algebra nd Ordered Sets", Palacký Univ., Olomouc 1994.
[6] R. Pöschel, The equatioal logic for graph algebras, Zeitschr. Math. Logik Grundlag. Math. 35 (1989), 273-282.
[7] R. Pöschel, Graph algebras and graph varieties, Algebra Universalis 27 (1990), 559-577.
[8] C.R. Shallon, Nonfinitely based finite algebras derived from lattices, Ph. D. Disertation, Univ. of California, Los Angeles 1979.

Received 29 June 1997
Revised 15 April 1999
Revised 30 November 1999


Close