DM-GAA

ISSN 1509-9415 (print version)

ISSN 2084-0373 (electronic version)

https://doi.org/10.7151/dmgaa

Discussiones Mathematicae - General Algebra and Applications

Cite Score (2023): 0.6

SJR (2023): 0.214

SNIP (2023): 0.604

Index Copernicus (2022): 121.02

H-Index: 5

Discussiones Mathematicae - General Algebra and Applications

PDF

Discussiones Mathematicae General Algebra and Applications 20(2) (2000) 159-167
DOI: https://doi.org/10.7151/dmgaa.1013

A FACTORIZATION OF ELEMENTS IN PSL(2,F), WHERE F =Q, R

Jan Ambrosiewicz

Institute of Mathematics, Technical University of Białystok
15-351 Białystok, ul. Wiejska 45A, Poland

Abstract

Let G be a group and Kn = {g ∈ G:o(g) = n}. It is prowed: (i) if F = R, n > 4, then PSL(2, F) = Kn2; (ii) if F = Q, R, n = ∞, then PSL(2, F) = Kn2; (iii) if F = R, then PSL(2, F) = K33; (iv) if F = Q, R, then PSL(2, F) = K23∪E, E ∉ K23, where E denotes the unit matrix; (v) if F = Q, then PSL(2, F) ≠ K33.

Keywords: factorization of linear groups, linear groups, matrix representations of groups, sets of elements of the same order in groups.

1991 Mathematics Subject Classification: 20G20, 11E57, 15A23, 20G15.

References

[1] J. Ambrosiewicz, On the property W for the multiplicative group of the quaternions algebra, Studia Univ. Babes-Bolyai Math. 25 (1980), no. 2, p. 2-3.
[2] J. Ambrosiewicz, The property W2 for the multiplicative group of the quaternions field, Studia Univ. Babes-Bolyai Math. 29 (1984), 63-67.
[3] J. Ambrosiewicz, On the square of sets of the group SL(3, F), PSL(3, F), Demonstratio Math. 18 (1985), 963-968.
[4] J. Ambrosiewicz, On square of sets of linear groups, Rend. Sem. Mat. Univ. Padova 75 (1986), 253-256.
[5] J. Ambrosiewicz, Powers of sets in linear group, Demonstratio Math. 23 (1990), 395-403.
[6] J. Ambrosiewicz, Square of set of elements of order two in orthogonal groups, Publ. Math. Debrecen 41 (1992), 189-198.
[7] J. Ambrosiewicz, If K is a real field then cn(PSL(2,K)) = 4, Demonstratio Math. 29 (1996), 783-785.
[8] E.W. Ellers, Bireflectionality in classical groups, Canad. J. Math. 29 (1977), 1157-1162.
[9] E.W. Ellers, R. Frank, and W. Nolte, Bireflectionality of the weak orthogonal and the weak sympletic groups, J. Algebra 88 (1984), 63-67.

Received 15 January 1997
Revised 12 July 1999
Revised 15 November 1999


Close