Discussiones
Mathematicae General Algebra and Applications 20(1) (2000) 141-151
DOI: https://doi.org/10.7151/dmgaa.1012
BOOLEAN MATRICES ... NEITHER BOOLEAN NOR MATRICES
Gabriele Ricci
Universitá di Parma, I-43100 Parma, Italy
e-mail:
Abstract
Boolean matrices, the incidence matrices of a graph, are known not to be the (universal) matrices of a Boolean algebra. Here, we also show that their usual composition cannot make them the matrices of any algebra. Yet, later on, we ``show" that it can. This seeming paradox comes from the hidden intrusion of a widespread set-theoretical (mis) definition and notation and denies its harmlessness. A minor modification of this standard definition might fix it.
Keywords: universal matrix, functional application, generalized matrix, analytic monoid.
1991 Mathematics Subject Classification: Primary 08A02; Secondary 04A05, O8A35.
References
[1] | J. Adámek, H. Herrlich and G.E. Strecker, Abstract and Concrete Categories, John Wiley & Sons, New York 1990. |
[2] | S.L. Bloom and Z. Ésik, Matrix and iteration theories, I and II, J. Comput. System Sci. 46 (1993), 381-408 and 409-439. |
[3] | S.L. Bloom and Z. Ésik, Iteration Theories, The Equational Logic of Iterative Processes, Springer-Verlag, Berlin 1993. |
[4] | C.C. Elgot, Matricial Theories, J. Algebra 42 (1976), 391-421. |
[5] | K. Głazek, Some old and new problems in the independence theory, Colloq. Math. 42 (1979), 127-189. |
[6] | J.R. Hindley and J.P. Seldin, Introduction to Combinators and λ-Calculus, Cambridge University Press, London 1986. |
[7] | K.-H. Kim, Boolean Matrix Theory and Applications, M. Dekker, New York 1982. |
[8] | E.G. Manes, Algebraic Theories, Springer-Verlag, Berlin 1976. |
[9] | J.D. Monk, Introduction to Set Theory, McGraw-Hill, New York 1969. |
[10] | G. Ricci, Universal eigenvalue equations, Pure Math. Appl., Ser. B, 3 (1992), 231-288. |
[11] | G. Ricci, ERRATA to Universal eigenvalue equations, ibidem, 5 (1994), 241-243. |
[12] | G. Ricci, A Whitehead Generator, Quaderni del Dipartimento di Matematica 86, Universitá di Parma, Parma, 1993. |
[13] | G. Ricci, Two isotropy properties of ``universal eigenspaces" (and a problem for DT0L rewriting systems), Contributions to General Algebra 9 (1995), 281-290. |
[14] | G. Ricci, New characterizations of universal matrices show that neural networks cannot be made algebraic, Contributions to General Algebra 10 (1998), 268-291. |
[15] | G. Ricci, Analytic monoids, to appear in the proceedings: ``Atti Convegno Strutture Geometriche, Combinatoria e loro applicazioni (Caserta Febr. 25-27, 1999)". |
[16] | J.H.M. Wedderburn, Boolean linear associative algebra, Ann. of Math. 35 (1934), 185-194. |
[17] | A.N. Whitehead, A Treatise on Universal Algebra with Applications, 1, Cambridge University Press, Cambridge 1898. |
Received 12 April 1999
Revised 24 November 1999
Revised 25 March 2000
Close