DM-GAA

ISSN 1509-9415 (print version)

ISSN 2084-0373 (electronic version)

https://doi.org/10.7151/dmgaa

Discussiones Mathematicae - General Algebra and Applications

Cite Score (2023): 0.6

SJR (2023): 0.214

SNIP (2023): 0.604

Index Copernicus (2022): 121.02

H-Index: 5

Discussiones Mathematicae - General Algebra and Applications

PDF

Discussiones Mathematicae General Algebra and Applications 20(1) (2000) 141-151
DOI: https://doi.org/10.7151/dmgaa.1012

BOOLEAN MATRICES ... NEITHER BOOLEAN NOR MATRICES

Gabriele Ricci

Universitá di Parma, I-43100 Parma, Italy
e-mail: ricci@prmat.math.unipr.it

Abstract

Boolean matrices, the incidence matrices of a graph, are known not to be the (universal) matrices of a Boolean algebra. Here, we also show that their usual composition cannot make them the matrices of any algebra. Yet, later on, we ``show" that it can. This seeming paradox comes from the hidden intrusion of a widespread set-theoretical (mis) definition and notation and denies its harmlessness. A minor modification of this standard definition might fix it.

Keywords: universal matrix, functional application, generalized matrix, analytic monoid.

1991 Mathematics Subject Classification: Primary 08A02; Secondary 04A05, O8A35.

References

[1] J. Adámek, H. Herrlich and G.E. Strecker, Abstract and Concrete Categories, John Wiley & Sons, New York 1990.
[2] S.L. Bloom and Z. Ésik, Matrix and iteration theories, I and II, J. Comput. System Sci. 46 (1993), 381-408 and 409-439.
[3] S.L. Bloom and Z. Ésik, Iteration Theories, The Equational Logic of Iterative Processes, Springer-Verlag, Berlin 1993.
[4] C.C. Elgot, Matricial Theories, J. Algebra 42 (1976), 391-421.
[5] K. Głazek, Some old and new problems in the independence theory, Colloq. Math. 42 (1979), 127-189.
[6] J.R. Hindley and J.P. Seldin, Introduction to Combinators and λ-Calculus, Cambridge University Press, London 1986.
[7] K.-H. Kim, Boolean Matrix Theory and Applications, M. Dekker, New York 1982.
[8] E.G. Manes, Algebraic Theories, Springer-Verlag, Berlin 1976.
[9] J.D. Monk, Introduction to Set Theory, McGraw-Hill, New York 1969.
[10] G. Ricci, Universal eigenvalue equations, Pure Math. Appl., Ser. B, 3 (1992), 231-288.
[11] G. Ricci, ERRATA to Universal eigenvalue equations, ibidem, 5 (1994), 241-243.
[12] G. Ricci, A Whitehead Generator, Quaderni del Dipartimento di Matematica 86, Universitá di Parma, Parma, 1993.
[13] G. Ricci, Two isotropy properties of ``universal eigenspaces" (and a problem for DT0L rewriting systems), Contributions to General Algebra 9 (1995), 281-290.
[14] G. Ricci, New characterizations of universal matrices show that neural networks cannot be made algebraic, Contributions to General Algebra 10 (1998), 268-291.
[15] G. Ricci, Analytic monoids, to appear in the proceedings: ``Atti Convegno Strutture Geometriche, Combinatoria e loro applicazioni (Caserta Febr. 25-27, 1999)".
[16] J.H.M. Wedderburn, Boolean linear associative algebra, Ann. of Math. 35 (1934), 185-194.
[17] A.N. Whitehead, A Treatise on Universal Algebra with Applications, 1, Cambridge University Press, Cambridge 1898.

Received 12 April 1999
Revised 24 November 1999
Revised 25 March 2000


Close