DM-GAA

ISSN 1509-9415 (print version)

ISSN 2084-0373 (electronic version)

https://doi.org/10.7151/dmgaa

Discussiones Mathematicae - General Algebra and Applications

Cite Score (2023): 0.6

SJR (2023): 0.214

SNIP (2023): 0.604

Index Copernicus (2022): 121.02

H-Index: 5

Discussiones Mathematicae - General Algebra and Applications

PDF

Discussiones Mathematicae General Algebra and Applications 20(1) (2000) 121-128
DOI: https://doi.org/10.7151/dmgaa.1010

THE POSITIVE AND GENERALIZED DISCRIMINATORS DON'T EXIST

A.G. Pinus

Department of Algebra and Mathematical Logic
Novosibirsk State Technical University
Novosibirsk, Russia

e-mail: algebra@nstu.nsk.su

Abstract

In this paper it is proved that there does not exist a function for the language of positive and generalized conditional terms that behaves the same as the discriminator for the language of conditional terms.

Keywords: discriminator function, positive conditional term, generalized conditional term.

1991 Mathematics Subject Classification: 08A40, 08B05, 03C05.

References

[1] A.G. Pinus, On conditional terms and identities on universal algebras, Siberian Advances in Math. 8 (1998), 96-109.
[2] A.G. Pinus, The calculas of conditional identities and conditionally rational equivalence (in Russian), Algebra i Logika (English transl.: Algebra and Logic) 37 (1998), 432-459.
[3] A.G. Pinus, N-elementary embeddings and n-conditionally terms, Izv. Vyssh. Uchebn. Zaved. Mat., 1999, no. 1, p. 36-40.
[4] A.G. Pinus, Conditional terms and its applications, p. 291-300 in: (Algebra Proceedings of the Kurosh Conference), Walter de Gruyter, Berlin-New York 2000.
[5] A.G. Pinus, The inner homomorphisms and positive conditinal terms, (in Russian), Algebra i Logika, to appear.

Received 6 January 1999
Revised 20 March 1999
Revised 2 July 1999


Close