DM-GAA

ISSN 1509-9415 (print version)

ISSN 2084-0373 (electronic version)

https://doi.org/10.7151/dmgaa

Discussiones Mathematicae - General Algebra and Applications

Cite Score (2023): 0.6

SJR (2023): 0.214

SNIP (2023): 0.604

Index Copernicus (2022): 121.02

H-Index: 5

Discussiones Mathematicae - General Algebra and Applications

PDF

Discussiones Mathematicae General Algebra and Applications 20(1) (2000) 87-95
DOI: https://doi.org/10.7151/dmgaa.1008

RING-LIKE OPERATIONS IN PSEUDOCOMPLEMENTED SEMILATTICES

Ivan Chajda

Department of Algebra and Geometry, Palacký University Olomouc
Tomkova 40, 779 00 Olomouc, Czech Republic

e-mail: chajda@risc.upol.cz

Helmut Länger

Technische Universität Wien, Institut für Algebra und Computermathematik
Abteilung für Mathematik in den Naturwissenschaften
Wiedner Hauptstraß e 8-10, A-1040 Wien

e-mail: h.laenger@tuwien.ac.at

Abstract

Ring-like operations are introduced in pseudocomplemented semilattices in such a way that in the case of Boolean pseudocomplemented semilattices one obtains the corresponding Boolean ring operations. Properties of these ring-like operations are derived and a characterization of Boolean pseudocomplemented semilattices in terms of these operations is given. Finally, ideals in the ring-like structures are defined and characterized.

Keywords: pseudocomplemented semilattice, Boolean algebra, Boolean ring, distributivity, linear equation, ideal, congruence kernel.

1991 Mathematics Subject Classification: 06A12, 08C10, 06E20, 16Y99.

References

[1] I. Chajda, Pseudosemirings induced by ortholattices, Czechoslovak Math. J. 46 (121) (1996), 405-411.
[2] G. Dorfer, A. Dvurecenskij and H. Länger, Symmetric difference in orthomodular lattices, Math. Slovaca 46 (1996), 435-444.
[3] D. Dorninger, H. Länger and M. Maczy\'nski, The logic induced by a system of homomorphisms and its various algebraic characterizations, Demonstratio Math. 30 (1997), 215-232.
[4] O. Frink, Pseudo-complements in semi-lattices, Duke Math. J. 29 (1962), 505-514.
[5] H. Länger, Generalizations of the correspondence between Boolean algebras and Boolean rings to orthomodular lattices, Tatra Mt. Math. Publ. 15 (1998), 97-105.
[6] A.I. Mal'cev, On the general theory of algebraic systems (Russian), Mat. Sb. 35 (1954), 3-20.

Received 21 September 1998
Revised 7 June 1999


Close