DM-GAA

ISSN 1509-9415 (print version)

ISSN 2084-0373 (electronic version)

https://doi.org/10.7151/dmgaa

Discussiones Mathematicae - General Algebra and Applications

Cite Score (2023): 0.6

SJR (2023): 0.214

SNIP (2023): 0.604

Index Copernicus (2022): 121.02

H-Index: 5

Discussiones Mathematicae - General Algebra and Applications

PDF

Discussiones Mathematicae General Algebra and Applications 20(1) (2000) 77-86
DOI: https://doi.org/10.7151/dmgaa.1007

ON FUZZY TOPOLOGICAL BCC-ALGEBRAS

Wiesław A. Dudek

Institute of Mathematics Technical University
Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland

e-mail: dudek@im.pwr.wroc.pl

Young Bae Jun and Sung Min Hong

Department of Mathematics Education
Gyeongsang National University
Chinju 660-701, Korea
e-mail: ybjun@nongae.gsnu.ac.kr

Abstract

We describe properties of subalgebras and BCC-ideals in BCC-algebras with a topology induced by a family of fuzzy sets.

Keywords: BCC-algebra, fuzzy subalgebra, fuzzy topological subalgebra.

1991 Mathematics Subject Classification: 06F35, 03G25, 94D05.

References

[1] W.A. Dudek, The number of subalgebras of finite BCC-algebras, Bull. Inst. Math. Acad. Sinica 20 (1992), 129-136.
[2] W.A. Dudek, On proper BCC-algebras, Bull. Inst. Math. Acad. Sinica 20 (1992), 137-150.
[3] W.A. Dudek and Y.B. Jun, Fuzzy BCC-ideals in BCC-algebras, Math. Montisnigri 10 (1999), 21-30.
[4] W.A. Dudek and X.H. Zhang, On ideals and congruences in BCC-algebras, Czechoslovak Math. J. 48 (123) (1998), 21- 29.
[5] D.H. Foster, Fuzzy topological groups, J. Math. Anal. Appl. 67 (1979), 549-564.
[6] Y. Imai and K. Iséki, On axiom system of propositional calculi XIV, Proc. Japan Acad. 42 (1966), 19-22.
[7] K. Iséki and S. Tanaka, An introduction to the theory of BCK-algebras, Math. Japon. 23 (1978), 1-26.
[8] Y. Komori, The class of BCC-algebras is not a variety, Math. Japon. 29 (1984), 391-394.
[9] J. Meng and Y. B. Jun, BCK-algebras, Kyungmoonsa, Seoul, Korea 1994.
[10] A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl. 35 (1971), 512-517.
[11] A. Wroński, BCK-algebras do not form a variety, Math. Japon. 28 (1983), 211-213.
[12] L.A. Zadeh, Fuzzy sets, Inform. Control 8 (1965), 338-353.

Received 3 September 1998
Revised 26 March 1999


Close