DM-GAA

ISSN 1509-9415 (print version)

ISSN 2084-0373 (electronic version)

https://doi.org/10.7151/dmgaa

Discussiones Mathematicae - General Algebra and Applications

Cite Score (2023): 0.6

SJR (2023): 0.214

SNIP (2023): 0.604

Index Copernicus (2022): 121.02

H-Index: 5

Discussiones Mathematicae - General Algebra and Applications

PDF

Discussiones Mathematicae General Algebra and Applications 20(1) (2000) 51-61
DOI: https://doi.org/10.7151/dmgaa.1005

SPECTRA OF ABELIAN WEAKLY ASSOCIATIVE LATTICE GROUPS

Jirí Rachůnek

Department of Algebra and Geometry, Palacký University
Tomkova 40, 779 00 Olomouc, Czech Republic

e-mail: Rachunek@risc.upol.cz

Abstract

The notion of a weakly associative lattice group is a generalization of that of a lattice ordered group in which the identities of associativity of the lattice operations join and meet are replaced by the identities of weak associativity. In the paper, the spectral topologies on the sets of straightening ideals (and on some of their subsets) of abelian weakly associative lattice groups are introduced and studied.

Keywords: weakly associative lattice group, prime ideal, straightening ideal, spectral topology, spectrum

1991 Mathematics Subject Classification: 06F15.

References

[1] M. R. Darnel, Theory of Lattice-Ordered Groups, Marcel Dekker, Inc., New York-Basel-Hong Kong 1995.
[2] E. Fried, Tournaments and non-associative lattices, Ann. Univ. Sci. Budapest, Sect. Math. 13 (1970), 151-164.
[3] E. Fried, A generalization of ordered algebraic systems, Acta Sci. Math. (Szeged) 31 (1970), 233-244.
[4] A.M.W. Glass and W.Ch. Holland (Eds.) , Lattice-Ordered Groups (Advances and Techniques), Kluwer Acad. Publ., Dordrecht-Boston-London 1989.
[5] V.M. Kopytov and N.Ya. Medvedev, The Theory of Lattice Ordered Groups, Kluwer Acad. Publ., Dordrecht 1994.
[6] J. Rach23 unek, Structure spaces of lattice ordered groups, Czechoslovak Math. J. 39 (114) (1989), 686-691.
[7] J. Rach23 unek, Solid subgroups of weakly associative lattice groups, Acta Univ. Palack. Olom., Fac. Rer. Nat., no. 105, Math. 31 (1992), 13-24.
[8] J. Rach23 unek, On some varieties of weakly associative lattice groups, Czechoslovak Math. J. 46 (121) (1996), 231-240.
[9] H. Skala, Trellis theory, Algebra Universalis 1 (1971), 218-233.
[10] H. Skala, Trellis Theory, Memoirs Amer. Math. Soc., no. 121, Providence 1972.

Received 21 May 1998
Revised 8 June 1999


Close