Discussiones
Mathematicae General Algebra and Applications 20(1) (2000) 43-49
DOI: https://doi.org/10.7151/dmgaa.1004
ON DUALITY OF SUBMODULE LATTICES
Gábor Czédli and Géza Takách
JATE Bolyai Institute
Aradi vértanúk tere 1, H-6720 Szeged, Hungary
e-mail: czedli@math.u-szeged.hu
e-mail:
Dedicated to the memory of George Hutchinson
Abstract
An elementary proof is given for Hutchinson's duality theorem, which states that if a lattice identity λ holds in all submodule lattices of modules over a ring R with unit element then so does the dual of λ.
Keywords: submodule lattice, lattice identity, duality.
1991 Mathematics Subject Classification: Primary 06C05, Secondary 08B10, 16D99.
References
[1] | G. Frobenius, Theorie der linearen Formen mit ganzen Coefficienten, J. Reine Angew. Math. 86 (1879), 146-208. |
[2] | G. Hutchinson, On classes of lattices representable by modules, p. 69-94 in: Proceedings of the University of Houston Lattice Theory Conference, Univ. Houston 1973. |
[3] | G. Hutchinson and G. Czédli, A test for identities satisfied in submodule lattices, Algebra Universalis 8 (1978), 269-309. |
[4] | A.F. Pixley, Local Mal'cev conditions, Canadian Math. Bull. 15 (1972),559-568. |
[5] | R. Wille, Kongruenzklassengeometrien, Lecture Notes in Math., no. 113, Springer-Verlag, Berlin-Heidelberg-New York 1970. |
Received 23 February 1998
Close