DM-GAA

ISSN 1509-9415 (print version)

ISSN 2084-0373 (electronic version)

https://doi.org/10.7151/dmgaa

Discussiones Mathematicae - General Algebra and Applications

Cite Score (2023): 0.6

SJR (2023): 0.214

SNIP (2023): 0.604

Index Copernicus (2022): 121.02

H-Index: 5

Discussiones Mathematicae - General Algebra and Applications

Article in volume


Authors:

S. Leeratanavalee

Sorasak Leeratanavalee

Research Group in Mathematics and Applied Mathematics
Department of Mathematics, Faculty of Science
Chiang Mai University
Chiang Mai 50200, Thailand

email: sorasak.l@cmu.ac.th

0000-0001-8818-6134

Dr. Kumduang

Thodsaporn Kumduang

Rajamangala University of Technology Rattanakosin

email: kumduang01@gmail.com

Title:

The partial many-sorted algebras of terms and formulas with fixed variables count

PDF

Source:

Discussiones Mathematicae - General Algebra and Applications 43(2) (2023) 339-362

Received: 2022-02-03 , Revised: 2022-04-20 , Accepted: 2022-04-20 , Available online: 2023-10-06 , https://doi.org/10.7151/dmgaa.1444

Abstract:

Terms and formulas, which are formal expressions in first and second order languages obtained by alphabets, operation symbols, and relation symbols, are used to study algebras and algebraic systems. In this paper, we introduce the notion of terms with fixed variables count. The partial many-sorted superposition operations of such terms and their partial many-sorted algebra satisfying clone axioms as weak identities are presented. We also extend our structures from algebras to algebraic systems via the concept of formulas with fixed variables count. Conditions for the set of such formulas to be closed under taking of superposition of formulas are determined. We construct the partial many-sorted algebra of formulas with fixed variables count and investigate its satisfaction by clone axioms. Finally, we prove that such partial structure is isomorphic to some Menger systems of the same rank of partial multiplace functions.

Keywords:

partial many-sorted algebra, term, formula, partial operation, representation

References:

  1. E. Aichinger, N. Mudrinski and J. Oprsal, Complexity of term representations of finitary functions, Int. J. Algebra Comput. 28 (2018) 1101–1118.
    https://doi.org/10.1142/S0218196718500480
  2. S. Bozapalidis, Z. Flap and G. Rahonis, Equational tree transformations, Theoret. Comput. Sci. 412 (99) (2011) 3676–3692.
    https://doi.org/10.1016/j.tcs.2011.03.028
  3. P. Burmeister, A model theoretic oriented approach to partial algebras, in: Introduction to Theory and Application of Partial Algebras, Mathematical Research 32 (Akademie Verlag, 1986).
  4. S. Busaman, Unitary Menger algebra of C-quantifier free formulas of type $(\tau_n,2)$, Asian-Eur. J. Math. 14 (4) (2021) 2150050.
    https://doi.org/10.1142/S1793557121500509
  5. N. Chansuriya, All maximal idempotent submonoids of generalized cohypersubstitutions of type $\tau=(2)$, Discuss. Math. Gen. Algebra Appl. 41 (1) (2021) 45–46.
    https://doi.org/10.7151/dmgaa.1351
  6. J. Crulis, Multi-algebras from the viewpoint of algebraic logic, Algebra Discrete Math. 1 (2003) 20–31.
  7. K. Denecke, Partial clones, Asian-Eur. J. Math. 13 (8) (2020) 2050161.
    https://doi.org/10.1142/S1793557120501612
  8. K. Denecke, The partial clone of linear formulas, Sib. Math J. 60 (2019) 572–584.
    https://doi.org/10.1134/S0037446619040037
  9. K. Denecke, The partial clone of linear terms, Sib. Math J. 57 (4) (2016) 589–598.
    https://doi.org/10.1134/S0037446616040030
  10. K. Denecke and H. Hounnon, Partial Menger algebras of terms, Asian-Eur. J. Math. 14 (6) (2021) 2150092.
    https://doi.org/10.1142/S1793557121500923
  11. K. Denecke and D. Phusanga, Hyperformulas and solid algebraic systems, Studia Logica 9 (2008) 263–286.
    https://doi.org/10.1007/s11225-008-9152-3
  12. K. Denecke and S.L. Wismath, Complexity of terms, composition and hypersubstitution, Int. J. Math. Math. Sci. 15 (2003) 959–969.
    https://doi.org/10.1155/S0161171203202118
  13. W.A. Dudek and V.S. Trokhimenko, Menger algebras of $k$ commutative $n$-place functions, Georgian Math. J. 28 (3) (2021) 355–361.
    https://doi.org/10.1515/gmj-2019-2072
  14. Y. Guellouma and H. Cherroun, From tree automata to rational tree expressions, Int. J. Found. Comput. Sci. 29 (6) (2018) 1045–1062.
    https://doi.org/10.1142/S012905411850020X
  15. H.J. Hoehnke and J. Schreckenberger, Partial Algebras and Their Theories (Shaker-Verlag, Aachen, 2007).
  16. S. Kerhoff, R. Pöschel and F.M. Schneider, A short introduction to clones, Electron. Notes Theoret. Comput. Sci. 303 (2014) 107–120.
    https://doi.org/10.1016/j.entcs.2014.02.006
  17. K.A. Kearnes and A. Szendrei, Clones of algebras with parallelogram terms, Internat. J. Algebra Comput. 22 (2012) 1250005.
    https://doi.org/10.1142/S0218196711006716
  18. J. Koppitz and D. Phusanga, The monoid of hypersubstitutions for algebraic systems, J. Announcements Union Sci Sliven 33 (2018) 120–127.
  19. T. Kumduang and S. Leeratanavalee, Left translations and isomorphism theroems of Menger algebras, Kyungpook Math. J. 61 (2) (2021) 223–237.
    https://doi.org/10.5666/KMJ.2021.61.2.223
  20. T. Kumduang and S. Leeratanavalee, Menger hyperalgebras and their representations, Commun. Algebra 49 (4) (2021) 1513–1533.
    https://doi.org/10.1080/00927872.2020.1839089
  21. T. Kumduang, and S. Leeratanavalee, Menger systems of idempotent cyclic and weak near-unanimity multiplace functions, Asian-Eur. J. Math. (2022).
    https://doi.org/10.1142/S1793557122501625
  22. T. Kumduang and S. Leeratanavalee, Semigroups of terms, tree languages, Menger algebra of $n$-ary functions and their embedding theorems, Symmetry 13 (4) (2021) 558.
    https://doi.org/10.3390/sym13040558
  23. P. Kunama and S. Leeratanavalee, Green's relations on submonoids of generalized hypersubstitutions of type $(n)$, Discuss. Math. Gen. Algebra Appl. 41 (2) (2021) 239–248.
    https://doi.org/10.7151/dmgaa.1366
  24. E. Lehtonen, R. Paschel and T. Waldhauser, Reflection-closed varieties of multisorted algebras and minor identities, Algebra Univ. 79 (2018) 70.
    https://doi.org/10.1007/s00012-018-0547-3
  25. N. Lekkoksung and S. Lekkoksung, On partial clones of $k$-terms, Discuss. Math. Gen. Algebra Appl. 41 (2021) 361–379.
    https://doi.org/10.7151/dmgaa.1367
  26. A.I. Mal'cev, Algebraic Systems (Akademie-Verlag, Berlin, Germany, 1973).
  27. D. Phusanga, A binary relation on sets of hypersubstitutions for algebraic systems, South. Asian Bull. Math. 44 (2020) 255–269.
  28. D. Phusanga, J. Joomwong, S. Jino and J. Koppitz, All idempotent and regular elements in the monoid of generalized hypersubstitutions for algebraic systems of type $(2; 2)$, Asian-Eur. J. Math. 14 (2) (2021) 2150015.
    https://doi.org/10.1142/S1793557121500157
  29. D. Phusanga and J. Koppitz, Some varieties of algebraic systems of type $((n),(m))$, Asian-Eur. J. Math. 12 (2019) 1950005.
    https://doi.org/10.1142/S1793557119500050
  30. S. Shtrakov and J. Koppitz, Stable varieties of semigroups and groupoids, Algebra Univers. 75 (2016) 85–106.
    https://doi.org/10.1007/s00012-015-0359-7
  31. S.V. Sudoplatov, Formulas and properties, their links and characteristics, Mathematics 9 (2021) 1391.
    https://doi.org/10.3390/math9121391
  32. N. Sungtong, The algebraic structures of quantifer free formulas induced by terms of a fixed variable, Int. J. Math. Comput. Sci. 16 (1) (2021) 459–469.
  33. K. Wattanatripop and T. Changphas, Clones of terms of a fixed variable, Mathematics 8 (2020) 260.
    https://doi.org/10.3390/math8020260
  34. K. Wattanatripop and T. Changphas, The Menger algebra of terms induced by order-decreasing transformations, Commun. Algebra 49 (7) (2021) 3114–3123.
    https://doi.org/10.1080/00927872.2021.1888385
  35. K. Wattanatripop, T. Kumduang, T. Changphas and S. Leeratanavalee, Power Menger algebras of terms induced by order-decreasing transformations and superpositions, Int. J. Math. Comput. Sci. 16 (4) (2021) 1697–1707.
  36. D. Zhuk, The cardinality of the set of all clones containing a given minimal clone on three elements, Algebra Univers. 68 (2012) 295–320.
    https://doi.org/10.1007/s00012-012-0207-y
  37. P. Zusmanovich, On the unity of Robinson Amitsur ultrafilters, J. Algebra 388 (2013) 268–286.
    https://doi.org/10.1016/j.jalgebra.2013.04.024

Close